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Abstract

The energy gradient theory is used to study the instability of Taylor–Couette flow between concentric rotating cylinders. This theory has been
proposed in our previous works. In our previous studies, the energy gradient theory was demonstrated to be applicable for wall-bounded parallel
flows. It was found that the critical value of the energy gradient parameter Kmax at turbulent transition is about 370–389 for wall-bounded
parallel flows (which include plane Poiseuille flow, pipe Poiseuille flow and plane Couette flow) below which no turbulence occurs. In this paper,
the detailed derivation for the calculation of the energy gradient parameter in the flow between concentric rotating cylinders is provided. The
calculated results for the critical condition of primary instability (with semi-empirical treatment) are found to be in very good agreement with
the experiments in the literature. A possible mechanism of spiral turbulence generation observed for counter-rotation of two cylinders can also
be explained using the energy gradient theory. The energy gradient theory can serve to relate the condition of transition in Taylor–Couette flow
to that in plane Couette flow. The latter reasonably becomes the limiting case of the former when the radii of cylinders tend to infinity. It is our
contention that the energy gradient theory is possibly fairly universal for analysis of flow instability and turbulent transition, and is found valid for
both pressure and shear driven flows in parallel and rotating flow configurations.
© 2007 Elsevier Masson SAS. All rights reserved.

Keywords: Instability; Transition; Taylor–Couette flow; Rotating cylinders; Energy gradient; Energy loss; Critical condition
1. Introduction

Taylor–Couette flow refers to the problem of flow between
two concentric rotating cylinders as shown in Fig. 1 [1–4]. This
terminology was named after the works of G.I. Taylor (1923)
and M. Couette (1890). This problem was first investigated ex-
perimentally by Couette (1890) and Mallock (1896). Couette
observed that the torque needed to rotate the outer cylinder
increased linearly with the rotation speed until a critical rota-
tion speed, after which the torque increased more rapidly. This
change was due to a transition from stable to unstable flow
at the critical rotation speed. Taylor was the first to success-
fully apply linear stability theory to a specific problem, and
succeeded in obtaining an excellent agreement of theory with
experiments for the flow instability between two concentric ro-
tating cylinders [5]. Taylor’s groundbreaking research for this
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Fig. 1. Taylor–Couette flow between concentric rotating cylinders.

problem has been considered as a classical example of flow in-
stability study [6–8].

In the past years, the problem of Taylor–Couette flow has
received renewed interests because of its importance in flow
stability and the fact that it is particularly amenable to rigor-
ous mathematical treatment/analysis due to infinitesimal dis-
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Nomenclature

A, Aa , A∗ coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s−1

Ā amplitude of the disturbance distance . . . . . . . . . m
B , Ba , B∗ coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . m2 s−1

D diameter of the pipe for pipe flow . . . . . . . . . . . . . m
E total mechanical energy of unit volume of

fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J m−3

h = R2 − R1, gap width between the inner cylinder
and the outer cylinder . . . . . . . . . . . . . . . . . . . . . . . m

H total mechanical energy loss of unit volume of fluid
due to viscosity in streamwise direction . . . . J m−3

K function of coordinates (dimensionless)
Kc critical value of Kmax for instability (dimensionless)
Kmax maximum of K in the domain (dimensionless)
l half-width of the channel for plane Poiseuille flow

and plane Couette flow . . . . . . . . . . . . . . . . . . . . . . m
n coordinate in transverse direction . . . . . . . . . . . . . m
p static pressure . . . . . . . . . . . . . . . . . . . . . . . . . . N m−2

r radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
R0 average radius of inner cylinder and outer

cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
R1 radius of inner cylinder . . . . . . . . . . . . . . . . . . . . . . m
R2 radius of outer cylinder . . . . . . . . . . . . . . . . . . . . . . m
Re Reynolds number (dimensionless)
s coordinate in streamwise direction . . . . . . . . . . . . m
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
T Taylor number (dimensionless)
u velocity component in the main flow

direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

u0 velocity at the mid-plane for plane Poiseuille flow
(channel flow) . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

U average velocity in the flow passage . . . . . . . m s−1

v velocity component in the transverse
direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

v′
m = Āωd , amplitude of the disturbance of velocity in

transverse direction . . . . . . . . . . . . . . . . . . . . . . m s−1

W work done to the unit volumetric fluid by
external . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J m−3

x coordinate in the streamwise direction . . . . . . . . . m
y coordinate in the transverse direction . . . . . . . . . . m
z coordinate in the spanwise direction. . . . . . . . . . . m
η radius ratio, ≡ R2/R1

θ angular coordinates . . . . . . . . . . . . . . . . . . . . . . . . rad
λ speed ratio, ≡ ω2/ω1

μ dynamics viscosity . . . . . . . . . . . . . . . . . . . . N m−2 s
ν kinematic viscosity . . . . . . . . . . . . . . . . . . . . . m2 s−1

ρ density of fluid . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

τ shear stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N m−2

ω angular velocity of the fluid . . . . . . . . . . . . . rad s−1

ω1 angular velocity of the inner cylinder . . . . . rad s−1

ω2 angular velocity of the outer cylinder . . . . . rad s−1

ω1a angular velocity of the inner cylinder after
splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad s−1

ω2a angular velocity of the outer cylinder after
splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad s−1

ωd frequency of the disturbance . . . . . . . . . . . . . . . s−1
turbances [1–3]. For the stability of an inviscid fluid moving
in concentric layers, Lord Rayleigh [9] used the circulation
variation versus the radius to explain the instability while von
Karman [10] employed the relative roles of centrifugal force
and pressure gradient to interpret the instability initiation. Their
goal was to determine the condition for which a perturbation re-
sulting from an adverse gradient of angular momentum can be
unstable. In his classic paper, Taylor [5] presented a mathemat-
ical stability analysis for viscous flow and compared the results
to laboratory observations. Taylor observed that, for small ratio
of the gap width to the cylinder radii and for a given rotating
speed of outer cylinder, when the rotation speed of the inner
cylinder is low, the flow remains laminar; when the rotation
speed of the inner cylinder exceeds a critical value, instabil-
ity sets in and rows of cellular vortices are developed. When
the rotating speed is increased to an even higher value, the cell
rows break down and a turbulence pattern is produced. He pro-
posed a parameter, now commonly known as the Taylor num-
ber, T = Re2(h/R0), to characterize this critical condition for
instability. Here, Re is the Reynolds number based on the gap
width (h) and the rotation speed of the inner cylinder, and R0

is the mean radius of the inner cylinder and the outer cylinder.
The critical value of the Taylor number for primary instability
is 1708 as obtained from linear analysis. This value agrees well
with his experiments [1–3]. For Taylor–Couette flow, Snyder
has given a semi-empirical equation for the critical condition
from the collected experimental data [11]. Esser and Gross-
mann have also given an analytical equation for the critical
condition by an simple approximation, but a constant in the
equation have to be fixed using the result of linear stability
analysis [12].

However, the problem of Taylor–Couette flow is still far
from completely resolved despite extensive study [11–17]. For
example, the limiting case of Taylor–Couette flow when the ra-
tio of the gap width to the radii tends to zero should agree with
that of plane Couette flow. This includes two possibilities: either
radius is infinite or gap width is very small. Thus, the crite-
rion for instability should reflect this phenomenon. There are
some recent works trying to address this issue to some degree
of success [18–20]. One may observes that Taylor’s criterion is
not appropriate when this limiting case is studied because plane
Couette flow is judged to be always stable due to Taylor num-
ber assuming a null value using Taylor’s criterion. This may be
attributed to the fact that Taylor’s criterion only considered the
effect of centrifugal force, and does not include the kinematic
inertia force. Therefore, it is reckoned to be suitable for low
Re number flows with high curvature. For rotating flow with
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higher Re number and low curvature, the flow may transit to
turbulence earlier and yet does not violate Taylor’s criterion.

Recently, Dou [21,22] proposed a new energy gradient the-
ory to analyze flow instability and turbulent transition prob-
lems. In this theory, the critical condition for flow instability
depends both on the base flow and the disturbance which agrees
with the experimental observations. For a given disturbance, the
critical condition for flow instability and turbulent transition is
determined by the ratio (K) of the gradient of total mechanical
energy in the transverse direction to the loss of total mechanical
energy in the streamwise direction. For a given flow geome-
try and fluid properties, when the maximum of K in the flow
field is larger than a critical value, it is expected that instability
would occur for some initial disturbances provided that the dis-
turbance energy is sufficiently large. For plane Poiseuille flow
(channel flow), Hagen–Poiseuille flow (pipe flow), and plane
Couette flow (simple shear flow), the findings based on the
theory are consistent with the experimental observations; for
the experimental determined critical condition, Kc = 370–389
for all the above mentioned three types of flows below which
there is no occurrence of turbulence. In these comparisons, the
distribution of K was calculated for each flow and the value
of Kc was obtained using the experimental data at critical con-
dition [21–23]. The theory also suggests the mechanism of
instability associated with an inflectional velocity profile for
viscous flows. The theory has been extended to curved flows
with similar derivations to parallel flows and three important
theorems have been obtained [24]. This theory has also been
employed to study the viscoelastic flows where the effect of
elastic force is dominating [25]. It should be mentioned that the
energy gradient theory is a semi-empirical theory since the crit-
ical value of K is observed and determined experimentally and
cannot be directly calculated from the theory so far. In this the-
ory, only the critical condition for the instability is sought after
and the detailed process of instability is not provided.

In this study, we apply the energy gradient theory to analyze
the Taylor–Couette flow between concentric rotating cylinders,
and aim to demonstrate that the mechanism of instability in
Taylor–Couette flow can be explained via the energy gradi-
ent concept. Through comparison with experiments, we show
that the energy gradient function K as a stability criterion is
sufficient to describe and characterize the flow instability in
Taylor–Couette flow. We also show that plane Couette flow can
be considered as just the limiting case of Taylor–Couette flow
when the curvature of the walls tends to zero. For flow between
concentric rotating cylinders, the flow instability may be in-
duced by rotation of the inner cylinder or the outer cylinder.
If it is induced by the former, a Taylor vortex cell pattern will
be formed when the critical condition is violated as in the exper-
iments; if it is induced by the latter, Taylor vortex cell pattern
will not occur and the flow may directly transit to turbulence
when the critical condition due to inertia force is reached as in
plane Couette flow [1–3,6]. In this study, only the critical con-
dition for the former situation is considered/treated.
2. Energy gradient theory revisited

Dou [21] proposed a mechanism with the aim to clarify the
phenomenon of transition from laminar flow to turbulence for
wall-bounded shear flows. In this mechanism, the whole flow
field is treated as an energy field. It is proposed that the gradi-
ent of total mechanical energy in the transverse direction of the
main flow and the total mechanical energy loss from viscous
friction in the streamwise direction dominate the instability
phenomena and hence the flow transition for a given distur-
bance. It is suggested that the energy gradient in the transverse
direction has the potential to amplify a velocity disturbance,
while the viscous friction loss in the streamwise direction can
resist and absorb this disturbance. The flow instability or the
transition to turbulence depends on the relative magnitude of
these two roles of energy gradient amplification and viscous
friction damping of the initial disturbance. In [22], more de-
tailed derivation has been given to exactly describe this mech-
anism, and this theory is termed as “energy gradient theory”.
Here, we give a short discussion for a better understanding of
the work presented in this study.

The equation of total mechanical energy for incompress-
ible flow by neglecting the gravitational energy can be written
as [21],

ρ
∂u
∂t

+ ∇
(

p + 1

2
ρu2

)
= μ∇2u + ρ(u × ∇ × u) (1)

For pressure driven flows, the derivatives of the total mechani-
cal energy in the transverse direction and the streamwise direc-
tion can be expressed, respectively, as [21–24],

∂E

∂n
= ∂(p + (1/2)ρu2)

∂n
= ρ(u × ω) · dn

|dn| + (μ∇2u) · dn
|dn|

= ρuω + (μ∇2u)n (2)

∂E

∂s
= ∂(p + (1/2)ρu2)

∂s
= ρ(u × ω) · ds

|ds| + (μ∇2u) · ds
|ds|

= (μ∇2u)s (3)

where ω = ∇ ×u is the vorticity. Since there is no work input in
the pressure driven flows, the magnitude of the total mechanical
energy loss of unit volumetric fluid along the streamwise direc-
tion equals to the derivatives of the total mechanical energy in
the streamwise direction, that is

∂H

∂s
= −∂E

∂s
(4)

For shear driven flows, the derivatives of the total mechan-
ical energy in the transverse direction is the same as Eq. (2).
The energy loss of unit volumetric fluid along the streamwise
direction equals to the derivatives of the total mechanical en-
ergy in the streamwise direction plus the work done to the fluid
by external,

∂H

∂s
= −∂E

∂s
+ ∂W

∂s
(5)

where W is the work done to the unit volume fluid by external.
For a given base of parallel flow, the fluid particles may move

in an oscillatory pattern in the streamwise direction if they are



H.-S. Dou et al. / International Journal of Thermal Sciences 47 (2008) 1422–1435 1425
subjected to a disturbance. With the motion, the fluid particle
may gain energy (
E) via the disturbance, and simultaneously
this particle may have energy loss (
H ) due to the fluid vis-
cosity along the streamline direction. The analysis in [22,24]
showed that the magnitudes of 
E and 
H determine the
stability of the flow of fluid particles. For parallel flows, the rel-
ative magnitude of the energy gained from the disturbance and
the energy loss due to viscous friction determines the distur-
bance amplification or decay. Thus, for a given flow, a stability
criterion can be written as follow for a half-period,

F = 
E


H
=

(
∂E

∂n

2Ā

π

) / (
∂H

∂s

π

ωd

u

)
= 2

π2
K

Āωd

u

= 2

π2
K

v′
m

u
< Const (6)

and

K = ∂E/∂n

∂H/∂s
(7)

Here, F is a function of coordinates which expresses the ra-
tio of the energy gained in a half-period by the particle and
the energy loss due to viscosity in the half-period. K is a di-
mensionless field variable (function) and expresses the ratio of
transversal energy gradient and the rate of the energy loss along
the streamline. E = 1

2ρV 2 is the kinetic energy per unit volu-
metric fluid, s is along the streamwise direction and n is along
the transverse direction. H is the energy loss per unit volumet-
ric fluid along the streamline for finite length. Further, ρ is the
fluid density, u is the streamwise velocity of main flow, Ā is the
amplitude of the disturbance distance, ωd is the frequency of
the disturbance, and v′

m = Āωd is the amplitude of the distur-
bance of velocity.

Further, 
E = ∂E
∂n

2Ā
π

and 
H = ∂H
∂s

π
ωd

u are the gradient of
total mechanical energy of unit volumetric fluid in the trans-
verse direction and the loss of total mechanical energy of unit
volumetric fluid in the streamwise direction, respectively. It can
be found from Eq. (6) that the large the value of F , the flow
is more unstable. There is a constant of F below which the
flow remains stable. For given disturbance, the value of K in
the flow field determines the flow stability. As stated earlier,
the ratio K is a dimensionless function of the flow field, i.e.,
a function of coordinates (x, y, z). Since K may vary with the
flow parameters and the spatial space, the maximum of K in
the domain, i.e., Kmax, should bound the stability of the flow
for given disturbance. As such, a critical value of Kmax can be
used to expresses the critical condition, and is given as Kc .
The energy gradient theory as described for parallel flows in
detail in [21,22], can be extended to the curved flow [24], if we
change the Cartesian coordinates (x, y) to curvilinear coordi-
nates (s, n), to change the kinetic energy ( 1

2mu2) to the total
mechanical energy (E = p + 1

2ρu2) (the gravitational energy
is neglected) in the analysis for the evolution of the disturbed
fluid particle, and to make the velocity (u) along the streamline
direction [24]. Here, p is the hydrodynamic pressure. Thus, af-
ter these substitutions, Eqs. (6) and (7) are also applicable for
curved flows. These equations can be derived from the first prin-
ciple via the same steps as in [22].

In term of Eqs. (6) and (7), the distribution of K in the flow
field and the property of disturbance may be the perfect means
to describe the disturbance amplification or decay in the flow.
According to this theory, it can be found that the flow insta-
bility first occur at the position of Kmax, for given disturbance,
which is construed to be the most “dangerous” position. Thus,
for a given disturbance, the occurrence of instability depends
on the magnitude of this dimensionless variable K and the crit-
ical condition is determined by the maximum value of K in the
flow. For a given flow geometry and fluid properties, when the
maximum of K in the flow field exceeds a critical value Kc , it
is expected that instability can occur for a certain initial distur-
bance [21,22]. Turbulence transition is a local phenomenon in
the earlier stage, as found in experiments [4]. For a given flow,
K is proportional to the global Reynolds number [21]. A large
value of K has the big ability to amplify the disturbance, and
vice versa. The energy gradient analysis has suggested that the
transition to turbulence is due to the energy gradient and the dis-
turbance amplification [21,22], rather than just the linear eigen-
value instability type as expounded and stated in [26,27]. Both
Trefethen et al. [26] and Grossmann [27] commented that the
nature of the onset-of-turbulence mechanism in parallel shear
flows must be different from an eigenvalue instability of lin-
ear equations of small disturbance. In fact, finite disturbance
is needed for the turbulence initiation in the range of finite Re
as found in experiments [28]. Dou [21,22] demonstrated that
the criterion obtained has a consistent value at the subcritical
condition of transition determined by the experimental data for
plane Poiseuille flow, pipe Poiseuille flow as well as plane Cou-
ette flow (see Table 1). For plane Poiseuille flow, both the two
definitions of Reynolds number are given in Table 1 because
different definitions are found in literature. In linear stability
analysis, Re = ρu0l/μ is generally used. Here, u0 is the ve-
locity at the centerline and l is the half width of the channel.
Table 1
Comparison of the critical Reynolds number and the energy gradient parameter Kmax for plane Poiseuille flow and pipe Poiseuille flow as well as for plane Couette
flow [21,22]

Flow type Re expression Eigenvalue analysis, Rec Experiments, Rec Kmax at Rec (from experiments), ≡ Kc

Pipe Poiseuille Re = ρUD/μ Stable for all Re 2000 385
Plane Poiseuille Re = ρUL/μ 7696 1350 389

Re = ρu0l/μ 5772 1012 389
Plane Couette Re = ρUl/μ Stable for all Re 370 370

U is the averaged velocity, u0 the velocity at the mid-plane of the channel, D the diameter of the pipe, h the half-width of the channel for plane Poiseuille flow
(L = 2l) and plane Couette flow. For Plane Poiseuille flow and pipe Poiseuille flow, the Kmax occurs at y/l = 0.5774, and r/R = 0.5774, respectively. For Plane
Couette flow, the Kmax occurs at y/l = 1.0.
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Another definition of Reynolds number, Re = ρUL/μ, is an
analogy to that used in pipe Poiseuille flow. Here, U is the av-
erage velocity in the channel and L is the width of the channel.

It can be deduced from Table 1 that the turbulence transition
takes place at a consistent critical value of Kc at about 385–389
for both the plane Poiseuille flow and pipe Poiseuille flow, and
about 370 for plane Couette flow. This may suggest that the
subcritical transition in parallel flows takes place at a consistent
value of Kc ≈ 370–385. This finding further suggests that the
mechanism of flow instability occurring in these basic flows
might be the same.

In all the parallel flows, observation can be made that the
transverse velocity is v = 0 and the pressure is constant in the
transverse direction. The variation of total mechanical energy
in the transverse direction is only due to the kinetic energy
1
2ρu2 (when the gravitational energy is neglected). Therefore,
the gradient of the kinetic energy is the possible source of am-
plification of disturbance along the transverse direction. In the
streamwise direction, the kinetic energy is constant, the energy
loss is the pressure drop for pressure driven flows or the input
of the external work for shear driven flows, which sustains the
velocity profile to keep it constant in the streamwise direction
for laminar flows. Due to zero transversal velocity, the diffusion
of energy in transverse direction is zero. Therefore, for all the
three parallel flows, including pressure driven flow and shear
driven flows, the gradient of kinetic energy in transverse direc-
tion and the energy loss along the streamline direction are the
dominating factors for the flow stability. As such, this can be
understood that the mechanism of flow instability in these par-
allel flows is the same.

It is also noticed that the critical condition for flow insta-
bility as determined by linear stability analysis differs largely
from the experimental data for all the three different types of
flows, as shown in Table 1. Therefore, linear stability analysis
is not a good method to analyze the condition for transition to
turbulence. Using energy gradient theory, it is observed that the
balance of the energy amplification in transverse direction and
the energy loss in streamwise direction really dominate the flow
stability. It is also demonstrated that the viscous flow with an in-
flectional velocity profile is unstable for both two-dimensional
flow and axisymmetric flow [29].

From above discussions, for the plane Poiseuille flow, this
said position where Kmax > Kc should then be the most danger-
ous location for flow breakdown, which has been confirmed by
Nishioka et al.’s experiment [30]. Nishioka et al.’s [30] exper-
iments for plane Poiseuille flow showed details of the outline
and process of the flow breakdown. The measured instanta-
neous velocity distributions indicate that the first oscillation
of the velocity occurs at y/h = 0.50∼0.62, as shown by the
Fig. 14 in [30]. Nishioka et al. [30] measured the distribution
of the instantaneous averaged velocity in a period, and the re-
sults indicate that the oscillation of the velocity always occurs
in the range of y/h = 0.50∼0.62 for the disturbance imposed
(the base flow keeps laminar).

For the pipe flow, in a recent study, Wedin and Kerswell [31]
showed the presence of a “shoulder” in the velocity profile at
about r/R = 0.6 from their traveling wave solution. They sug-
gested that this position corresponds to where the fast streaks
of traveling waves reach the wall. It can be construed that
this kind of velocity profile as obtained by simulation is sim-
ilar to that found in Nishioka et al.’s experiments for channel
flows [30]. The location of the “shoulder” is about the same as
that for Kmax (at y/h = 0.5774). According to the present the-
ory, this “shoulder” may then be intricately related to the energy
gradient distribution. The solution of traveling waves has been
confirmed by experiments recently [32].

In summary, the mechanism for instability described by the
function K is that it represents the balance between the two
roles of disturbance amplification by the energy gradient in the
transverse direction and disturbance damping by the energy loss
in the streamwise direction.

3. Energy gradient theory applied to Taylor–Couette flow

We shall assume that the disturbance to the base flow is peri-
odic and wave length is relatively small compared with the scale
of the flow geometry. The base flow is assumed to be steady
laminar flow. Whether stability criteria are written for the half-
period or whole period would be the same since the two half-
period are skew-symmetrical in a period. For the wall bounded
flows considered here, the boundary conditions is non-slip. For
the Taylor–Couette flow, assumptions on the base flow is that
expressed by the basic solution (the following Eqs. (8)–(11)).
The disturbance is assumed as periodic along the streamwise
direction of the basic flow (i.e., along the circular direction).
Under these assumptions, the same expression given previously
as Eqs. (6) and (7) can be derived for the circular flow between
concentric cylinders [24].

3.1. Velocity distribution for Taylor–Couette flow

The solution of velocity distribution between concentric ro-
tating cylinders can be found in many texts, e.g. [1–3]. Firstly,
we define the components of the velocity in the tangential and
radial directions as u and v, respectively. Assuming v = 0 and
∂
∂θ

= 0, the Navier–Stokes equations in radial and circumferen-
tial directions for steady flows reduce to

ρ
u2

r
= dp

dr
(8)

and

∂

∂r

(
∂u

∂r
+ u

r

)
= 0 (9)

Integrating Eq. (9) and using the boundary conditions gives the
solution of the velocity field as,

u = Ar + B

r
(10)

where

A = ω1
(η2 − λ)

η2 − 1
and B = ω1R

2
1
(1 − λ)

1 − η2
(11)

In Eq. (11), η = R1/R2 and λ = ω2/ω1. R1 is the radius of the
inner cylinder and R2 is the radius of the outer cylinder. ω1 and
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ω2 are the angular velocities of the inner and outer cylinders,
respectively.

3.2. Energy gradient in the transverse direction

The gradient of the total mechanical energy in the transverse
direction is

∂E

∂r
= ∂(p + 1/2ρu2)

∂r
= ρu

du

dr
+ ρ

u2

r
(12)

Introducing Eqs. (10) and (11) into Eq. (12), the energy gradient
in the transverse direction therefore is

∂E

∂r
= ρ

[(
Ar + B

r

)(
A − B

r2

)
+ 1

r

(
Ar + B

r

)2]

= 2ρA

(
Ar + B

r

)
(13)

3.3. Energy loss distribution for Taylor–Couette flow

The following equation for calculating the radial distribution
of rate of energy loss along the streamline for Taylor–Couette
flow is obtained as [33],

dH

ds
≡ τ

u

du

dr
− τ

r
(14)

where τ is the shear stress. Eq. (14) is applicable to flows for
one cylinder rotating and the other at rest, and cylinders rotat-
ing in opposite directions. For cylinders rotating in the same
direction, a different equation must be used [33]

dH

ds
≡ τa

ua

dua

dr
− τa

r
(15)

where ua is the velocity in the flow field expressed by ua =
u − rω2 assuming that ω1 > ω2 and τa is the shear stress in the
velocity field expressed by ua . The details of the derivation for
dH/ds can be found in [33] and is not repeated here.

With the velocity gradient obtained from Eq. (10), the shear
stress in (14) is therefore,

τ = μ

(
∂u

∂r
− u

r

)
= μ

[(
A − B

r2

)
− 1

r

(
Ar + B

r

)]
= −μ

2B

r2

(16)

where μ is the dynamic viscosity. Thus, we have

τ

r
= −μ

2B

r3
(17)

and

τ

u

du

dr
= −μ

2B

r2

(
Ar + B

r

)−1(
A − B

r2

)
(18)

Introducing Eqs. (17) and (18) into Eq. (14), the energy loss is

dH

ds
≡ τ

u

du

dr
− τ

r
= −μ

2B

r2

(
Ar + B

r

)−1(
A − B

r2

)
+ μ

2B

r3

= μ
2B

r2

[
1

r
−

(
Ar + B

r

)−1(
A − B

r2

)]

= μ
4B2

4

(
Ar + B

)−1

(19)

r r
For cylinders rotating in same direction, using the same proce-
dure as that derived for Eq. (19), the equation can be obtained
from Eq. (15) as,

dH

ds
≡ τa

ua

dua

dr
− τa

r
= μ

4B2
a

r4

(
Aar + Ba

r

)−1

(20)

where

Aa = ω1a

(η2 − λa)

η2 − 1
and Ba = ω1aR

2
1
(1 − λa)

1 − η2
(21)

and η = R1/R2, λa = ω2a/ω1a , ω1a = ω1 − ω2, and ω2a = 0.
Here, we have deliberately maintained Eqs. (19) and (20) with
similar form for the very purpose that the derivations in sub-
sequent sections below can use essentially the same equation,
differing only in the coefficients A and B for Eq. (19) and Aa

and Ba for Eq. (20).

3.4. Distribution of K

Introducing Eqs. (13) and (19) or (20) into Eq. (7), the ratio
of the gradients of the total mechanical energy in the trans-
verse direction and the loss of the total mechanical energy in
the streamwise direction, K , can be written as,

K = ∂E/∂r

∂H/∂s
= ρu du

dr
+ ρ u2

r

−( τ
u

du
dr

− τ
r
)

= 1

ν

2A(Ar + B
r
)

4B∗2

r4 (A∗r + B∗
r

)−1
(22)

where ν is the kinematic viscosity. In this equation, the calcula-
tions of A and B are carried out using Eq. (11). The evaluations
of A∗ and B∗ are different for counter rotating and co-rotating
cylinders. For cylinders rotating in opposite directions, A∗ = A

and B∗ = B (calculated using Eq. (11)); for cylinders rotat-
ing in same direction, A∗ = Aa and B∗ = Ba (calculated using
Eq. (21)).

Introducing Eqs. (10) and (11) or (21) into Eq. (22), then
simplifying and rearranging, Eq. (22) becomes,

K = 1

2ν

r4

R4
1

ω1

ω∗2
1

(η2 − λ)(η2 − 1)

ω1(1 − λ∗)2

×
[
ω1(η

2 − λ)

(η2 − 1)
r − 1

r
ω1R

2
1

(1 − λ)

(1 − η2)

]

×
[
ω∗

1(η2 − λ∗)
(η2 − 1)

r − 1

r
ω∗

1R2
1
(1 − λ∗)
(1 − η2)

]
(23)

The evaluations of λ∗ and ω∗
1 are different for counter rotating

and co-rotating cylinders. For cylinders rotating in opposite di-
rections, λ∗ = λ and ω∗

1 = ω1; for cylinders rotating in same
direction, λ∗ = λa and ω∗

1 = ω1a .
Re-arranging, Eq. (23) can be rewritten as

K = 1

2

ω1R
2
1

ν

ω1

ω∗
1

r4

R4
1

(η2 − λ)

(1 − λ∗)2(η2 − 1)

×
[

r

R1
(η2 − λ) − R1

r
(1 − λ)

]

×
[

r

R1
(η2 − λ∗) − R1

r
(1 − λ∗)

]
(24)

Using a more appropriate form by explicitly showing the
Reynolds number, Re = ω1R1h , Eq. (24) can be expressed as
ν
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K = 1

2
Re

R1

h

ω1

ω∗
1

r4

R4
1

(η2 − λ)

(1 − λ∗)2(η2 − 1)

×
[

r

R1
(η2 − λ) − R1

r
(1 − λ)

]

×
[

r

R1
(η2 − λ∗) − R1

r
(1 − λ∗)

]
(25)

where h = R2 − R1 is the gap width between the cylinders.
If the outer cylinder is at rest (ω2 = 0), and only the inner

cylinder is rotating (ω1 �= 0), then λ = 0, λ∗ = 0, and ω1
ω∗

1
= 1.

Further simplifying Eq. (25), we obtain

K = 1

2
Re

R2
1

h2

R1

R1 + R2

r2

R2
1

[
1 − r2

R2
2

]2

(26)

Next, by letting r = R2 − y, Eq. (26) is rewritten as

K = 1

2
Re

R2
1

h2
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R1 + R2

(R2 − y)2

R2
2
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R2
2
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R2
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h
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)2(
2 − y

h

h

R2

)2

(27)

This equation easily relates to plane Couette flow. Plane Cou-
ette flow can have two configurations: two plates move in op-
posite directions and one plate moves while the other is at rest.
Taylor–Couette flow with ω2 = 0 and ω1 �= 0 corresponds to
plane Couette flow for the latter case. From Eq. (27), it can be
seen that K is proportional to Re in any location in the field.
K is an eighth order function of distance from the outer cylin-
der across the channel, which is related to the value of relative
channel width h/R2. The distribution of K along the channel
width between cylinders calculated using Eq. (27) is depicted
in Fig. 2 for various values of h/R2 with the inner cylinder ro-
tating while the outer cylinder is kept at rest (ω2 = 0). For a
given Re and h/R2, it is found that K increases with increas-
ing y/h and the maximum of K is obtained at y/h = 1 for low
values of h/R2 (h/R2 < 0.43). That is, it reaches its maximum
at the surface of the inner cylinder. For higher value of h/R2
(h/R2 > 0.43), the location of Kmax moves to within the flow
located between y/h = 0 and y/h = 1. The cases studied in
the literature are usually for low gap width. We shall focus our
discussion for the case of h/R2 < 0.43 in this study. The maxi-
mum of K for h/R2 < 0.43 can be expressed as

Kmax = Re
R1

2(R1 + R2)

(
1 − h

R2

)2(
2 − h

R2

)2

(28)

It is found from Eq. (28) that Kmax depends on Reynolds num-
ber and the geometry. As we will see below, the critical stability
condition will be determined by Eq. (28). When the cylinder
radii tend to infinity, we have in Eq. (27)

R1

2(R1 + R2)
→ 1

4
,

(
1 − y

h

h

R2

)2

→ 1, and

(
2 − y h

)2

→ 4 (29)

h R2
Fig. 2. K/Re versus the channel width between the cylinders at various h/R2
for ω2 = 0 and ω1 �= 0 (the outer cylinder is fixed and the inner cylinder is
rotating).

Then, Eq. (27) reduces to

K = Re
y2

h2
(30)

This equation at the limit of infinite radii of cylinders is the
same as that for plane Couette flow [23]. The corresponding
maximum of K at y = h is

Kmax = Re = ω1R1h

ν
(31)

As discussed in [22,24], the development of the disturbance
in the flow is subjected to the mean flow condition and the
boundary and initial conditions. The mean flow is characterized
by energy gradient function K . Therefore, the flow stability
depends on the distribution of K in the flow field and the ini-
tial disturbance provided to the flow. In the flow regime with
high value of K , the flow is more unstable than that in the
flow regime with low value of K . The first sign of instability
should be associated with the maximum of K (Kmax) in the
flow field for a given disturbance. In other words, the position
of maximum of K is the most dangerous position. For given
flow disturbance, there is a critical value of Kmax over which
the flow becomes unstable. It is not trivial to directly predict
this critical value Kc by theory as in parallel flows [21] since
it is obviously a strongly nonlinear process and the usual tool
for perturbation analysis is not applicable. Nevertheless, it can
be observed in experiments as those done for parallel flows.
The value of Kmax when flow instability occurs can be taken
as a criterion for instability, and this value is recorded as Kc; if
Kmax > Kc , the flow will become unstable.

Thus, the study of distribution of K in the flow field can help
to locate the region where the flow is inclined to be unstable. In
Fig. 2, K increases with increasing y/h for given h/R2 (at low
value of h/R2), and its maximum occurs at the inner cylinder.
Thus, the flow at the outer cylinder is most stable and the flow
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at the inner cylinder is most unstable. Therefore, a small distur-
bance can be amplified at the inner cylinder if the value of K

reaches its critical value for the given geometry. In other words,
the inner cylinder is a possible location for first occurrence of
instability, as generally observed in the experiments [5,16].

In Fig. 2, the line for h/R2 = 0 corresponds to plane Cou-
ette flow wherein, one plate moves while the other is at rest,
which is a parabola (i.e., Eq. (30)) [23]. It can be found that
there is little difference in the distribution of K for h/R2 = 0.01
and h/R2 = 0. In terms of that view, one may expect that the
critical conditions of instability for these two values of h/R2
close to one another. When h/R2 increases, Kmax decreases.
This does not, however, imply that the flow becomes more sta-
ble as h/R2 increases. This is because the critical value of Kmax
varies with the variation of h/R2. It will be shown by experi-
mental data in subsequent sections that Kc decreases with the
increasing h/R2.

4. Comparison with experiments at critical condition

Taylor [5] used a graph of ω1/ν versus ω2/ν to present the
results of the critical condition for the primary instability. In
order to use the same chart as Taylor for ease of reference, the
comparison of theory with experiments is also plotted in this
way.

Rewriting Eq. (24), we have

(η2 − λ)

= K

1
2

ω1R
2
1

ν
ω1
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1

r4
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1

× (1 − λ∗)2(η2 − 1)

[ r
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(η2 − λ) − R1
r

(1 − λ)][ r
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r

(1 − λ∗)]
(32)

Rearranging Eq. (32), the following Eq. (33) is obtained,

ω1

ν
= ω2

ν
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2
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1

+ 2K
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1
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r
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(33)

Thus, the critical condition for a given geometry is given by Kc .
That is(

ω1

ν

)
c

= ω2

ν

R2
2

R2
1

+ 2Kc

R2
2

ω∗
1

ω1

R4
2

r4

× (1 − λ∗)2(η2 − 1)

[ r
R1

(η2 − λ) − R1
r

(1 − λ)][ r
R1

(η2 − λ∗) − R1
r

(1 − λ∗)]
(34)

In Eq. (34), Kc is the critical value of Kmax at the primary in-
stability condition, which can be determined from experiments.
For a given flow geometry, Kc is treated as constant for the ini-
tiation of instability as described before. After the value of Kc
Fig. 3. Comparison of the theory with the experimental data for the instability
condition of Taylor–Couette flow (Taylor (1923)’s experiments, R1 = 3.80 cm,
R2 = 4.035 cm). The relative gap width is h/R1 = 0.06184.

Fig. 4. Comparison of the theory with the experimental data for the instability
condition of Taylor–Couette flow (Taylor (1923)’s experiments, R1 = 3.55 cm,
R2 = 4.035 cm). The relative gap width is h/R1 = 0.1366.

is determined, the value of (ω1/ν)c can be solved by an itera-
tion process for an initial value of λ and a given value of ω2/ν.
The calculated results with the theory are compared with avail-
able experimental data in literature [5,11,13,16] concerning the
primary instability condition of Taylor–Couette flow. Figs. 3
and 4 show the comparison of theory with Taylor’s experi-
ments [5] for two parametric conditions, while Figs. 5–7 show
the comparisons of theory with Coles’ experiments [13], Sny-
der’s experiments [11], and Andereck et al.’s experiments [16],
respectively. In these figures, the critical value of the energy
gradient parameter K (Kc) is determined by the experimental
data at ω2 = 0 and ω1 �= 0 (the outer cylinder is fixed, the in-
ner cylinder is rotating). Using the determined value of Kc for
a given set of geometrical parameters, the critical value of ω1/ν

versus ω2/ν is calculated for a range of ω2/ν as in the exper-
iments using Eq. (34). In [12], the constant in the analytical
equation obtained was fixed using the result of linear stability
analysis.

It can be seen from Figs. 3–7 then that when the cylinders
rotate in the same direction, the theory obtains very good con-
currence with all the experimental data. When cylinders rotate
in opposite directions, the theory obtains good agreement with
the experimental data for small relative gap width (h/R1). For
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Fig. 5. Comparison of the theory with the experimental data for the instability
condition of Taylor–Couette flow (Coles (1965)’ experiments, R1 = 10.155 cm,
R2 = 11.52 cm). The data are taken from Fig. 2c in the paper [13]. The relative
gap width is h/R1 = 0.1343.

Fig. 6. Comparison of the theory with the experimental data for the insta-
bility condition of Taylor–Couette flow (Snyder (1968)’s experiments, R1 =
6.023 cm, R2 = 6.281 cm). The data are taken from Table III in [11]. The rela-
tive gap width is h/R1 = 0.0428.

Fig. 7. Comparison of the theory with the experimental data for the instability
condition of Taylor–Couette flow (Andereck et al. (1986)’s experiments, R1 =
5.25 cm, R2 = 5.946 cm). The data are taken from their Figs. 2 and 18 in [16].
The relative gap width is h/R1 = 0.1326.

larger relative gap width, the theory has some deviations from
the experimental data with increasing negative rotation speed
of the outer cylinder. The reason can be explained as follows.
When the gap is large and the cylinders are rotating in oppo-
site directions, the flow in the gap is more distorted compared
to plane Couette flow (linear velocity distribution). This dis-
tortion of velocity profile has an effect on the distributions of
flow energy loss and energy gradient. The magnitude of flow
energy loss dH/ds can be calculated by Eqs. (19) or (20) and
the energy gradient can be calculated by Eq. (13). On the other
hand, if the rotating speed of the outer cylinder is high, the flow
layer near the outer cylinder may earlier transit directly to tur-
bulence if the disturbance is sufficiently large [6,13], which has
not been the focus of researches before. This will obviously
alter the velocity profile of the flow and influence the distribu-
tion of the energy gradient function K and the maximum of K

(more discussion will be given in the paragraph below when
Fig. 8 is introduced and discussed). For example, in Andereck
et al.’s experiments [16], when ω2/ν is −100 and the inner
cylinder is at rest, the Reynolds number based on the rotation
speed of the outer cylinder Re2 (Re2 = R2hω2/ν) reaches 416.
At this value of 416, plane Couette flow has already become
turbulent (Rec = 325–370). For counter-rotating cylinders with
curved streamlines, the transition must occur earlier than that
in plane Couette flow because of the influence of the radial
pressure gradient which increases the radial (transverse) energy
gradient near the outer cylinder. The same type of deviation in
prediction is also observed in the comparison of Taylor’s math-
ematical theory with his experiments when cylinders rotate in
opposite directions at large negative rotating speed of outer
cylinder; in particular, if the relative gap is large [5]. There-
fore, when cylinders rotate in opposite directions, further study
is needed to study the occurrence of turbulence as induced by
shear flow near the outer cylinder (caused by convective iner-
tia). This is compared with the Taylor vortex pattern as induced
by the centrifugal force near the inner cylinder when only the
inner cylinder is rotating.

It is found that the first term on the right-hand side of
Eq. (34) is that for Rayleigh’s inviscid criterion, and the sec-
ond term on the right-hand side of Eq. (34) is due to the effect
of viscous friction. If Kc is zero, Eq. (34) degenerates to the
Rayleigh’s equation. In Figs. 3–7, Rayleigh’s inviscid criterion
((ω1)c = (R2/R1)

2ω2) is also included for comparison. In Tay-
lor’s calculations and experimental results [5], it was shown
that viscosity has only stabilizing role to the flow between the
concentric cylinders. For cylinders rotating in the same direc-
tion, our theory shows very good agreement with the experi-
ments and demonstrates that viscosity has a stabilizing effect
on the flow, as compared to the inviscid case. For inviscid flow
at ω2/ν = 0, (ω1/ν)c = 0. For the viscous flow, the viscosity
plays a stabilizing role and hence gives rise to a certain thresh-
old quantity of (ω1/ν)c not equal zero, below which the flow
is stable. The mechanism of the stability role of viscosity is the
same as for the parallel flows [21–24]. Viscosity leads to energy
loss along the flow path which leads to the disturbance damping
when the disturbance propagates between the fluid layers. Thus,
viscosity increases the stability of shear flows and enhances the
value of (ω1/ν)c .

In Fig. 8, we show the distribution of K along the channel
width at the critical condition of Kc = 77 as shown in Fig. 4,
which is taken from Taylor’s experiments for R1 = 3.55 cm and
R2 = 4.035 cm. The value of Kc is only dependent on the ratio
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Fig. 8. Distribution of K along the channel width at the critical condition Kc = 77 corresponding to Fig. 4. All the four data points are taken from the solid line
calculated by the energy gradient theory in Fig. 4. (a) The inner cylinder rotates while the outer cylinder is at rest; (b) Two cylinders rotate in same direction; (c) Two
cylinders rotate in opposite directions and the speed of the outer cylinder is low; (d) Two cylinders rotate in opposite directions and the speed of the outer cylinder
is high.
of radius, and is independent of the rotating speed of cylinders.
It can be seen in Fig. 8(a) that K increases monotonically from
the outer cylinder to the inner cylinder, when the inner cylin-
der is rotating while the outer cylinder is at rest. The maximum
of K occurs at the inner cylinder, so the stability of the flow is
dominated by the Kmax at the inner cylinder. In Fig. 8(b), it can
be seen that K increases monotonically from the outer cylin-
der to the inner cylinder, when the two cylinders are rotating
in same direction and ω1/ν is larger than ω2/ν. The maximum
of K also occurs at the inner cylinder, so the stability of the
flow is dominated by the Kmax at the inner cylinder too. In
these two pictures, the base flow in the gap is laminar flow.
Taylor vortex cell pattern are found in these cases as shown in
experiments [5,16]. When the two cylinders rotate in opposite
directions, the distribution of K generates two maxima respec-
tively at the inner cylinder and the outer cylinder. In Fig. 8(c),
it can be seen that the maximum at the outer cylinder is not
high since the speed of the outer cylinder is small. In this case
the base flow in the gap may be still laminar, and the stabil-
ity of the flow is still completely dominated by the Kmax at
the inner cylinder. If the speed of the outer cylinder becomes
high and exceeds certain critical value, the flow near the outer
cylinder may become turbulence provided that the disturbance
is sufficiently large [6,13]. As shown in Fig. 8(d), the value
of K at the outer cylinder (K = 367) is about or higher than
the critical value for plane Couette flow to transit to turbulence
(Kc = 325–370), the flow layer near the outer cylinder may
already be turbulent. Thus, although the base flow is laminar
near the inner cylinder but the flow may have transited to tur-
bulence near the outer cylinder, at this flow state which is the
critical condition of primary instability deemed dominated by
the rotation of inner cylinder. Therefore, as this critical condi-
tion is exceeded with increasing ω1/ν, but when ω2/ν is large
and negative, the usual Taylor vortex cell pattern may not ma-
terialize; instead spiral turbulence is generated [13,16]. This is
because the generation of turbulence near the outer cylinder has
altered the velocity distribution from its original laminar behav-
ior. The circulation of fluid particle between the two cylinder
surfaces (alternating between the laminar region and the turbu-
lent region) forms an intermittent and spiral turbulence pattern.
This may provide a plausible explanation for the observation of
spiral turbulence pattern as found in experiments [13,16]. As
reproduced in Fig. 9, Andereck et al. [16] plotted regimes of
the flows in terms of Ro and Ri as coordinates (shown as Fig. 1
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Fig. 9. Regimes of the flow behavior as identified by Andereck et al. [16]. The ordinate and abscissa are the Reynolds number based on the channel width and the
circumferential velocities of the inner and outer cylinder, respectively (used with permission by Cambridge University Press).
Fig. 10. Isoline of Kmax along the inner cylinder in the plane of the rotating
speeds of inner and outer cylinders (R1 = 3.80 cm, R2 = 4.035 cm), corre-
sponding to Fig. 3. The critical value of Kmax is indicated in the figure by the
thick blue line, which is calculated as shown in Fig. 3. (For interpretation of the
references to color, the reader is referred to the web version of this article.)

in their paper). Here Ro and Ri are the Reynolds number based
on the rotating speed of outer and inner cylinders, respectively.
The behavior of the flow may be better explained using the dis-
tribution of K along the gap width, as discussed above.

In Figs. 10 and 11, we show the isolines of the Kmax along
the side of inner cylinder in the plane of ω1/ν versus ω2/ν

which occurs on the surface of the inner cylinder. Because the
energy gradient dominates the flow behavior and controls the
mechanism of the flow instability and transition, the classifi-
Fig. 11. Isoline of Kmax along the inner cylinder in the plane of the rotating
speeds of inner and outer cylinders (R1 = 3.55 cm, R2 = 4.035 cm), corre-
sponding to Fig. 4. The critical value of Kmax is indicated in the figure by the
thick blue line, which is calculated as shown in Fig. 4. (For interpretation of the
references to color, the reader is referred to the web version of this article.)

cation of regimes may be better understood using the isolines
shown in Figs. 10 and 11. By comparing Figs. 10–11 and Fig. 9,
the regimes of the flow from experiments may appear to be aptly
characterized by the isolines of Kmax along the inner cylinder
in ω1/ν and ω2/ν plane. It should be noticed that the iso-
lines of Kmax for Kmax < Kc are exact, while the isolines for
Kmax > Kc are approximate because the velocity distribution
in the gap cannot be accurately expressed by Eq. (10) anymore
due to the formation of Taylor vortices or spiral vortices/spiral
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turbulence. It should be made clear that Kmax is the maximum
of the magnitude of K in the flow domain at a given ω1/ν and
ω2/ν condition and geometry, and Kc is critical value of Kmax
at the primary instability for a given geometry.

It would be (most) interesting to obtain a unified descrip-
tion for rotating flows and parallel flows vis-à-vis the mecha-
nism of instability. As introduced before, although the critical
Reynolds number differs greatly in magnitude for plane Cou-
ette flow, plane Poiseuille flow and pipe Poiseuille flow, the
critical value of the Kmax is about the same for all the three
mentioned kinds of flows (325–389). Plane Couette flow is the
limiting case of Taylor–Couette flow when the curvature of
walls is zero. The limiting value of critical condition of Taylor–
Couette flow should be the same as that for plane Couette
flows. Lundbladh and Johansson’s direct numerical simulation
produced a critical condition of Rec = 375 for plane Couette
flow [34]. Another three (independent) research groups also ob-
tained Rec = 370 ± 10 in experiments via flow visualization
technique during the period 1992–1995 [35–37]. Some subse-
quent experiments showed a lower critical Reynolds number
of 325 [38,39]. In order to include all possible results, the data
can be classified as in the range of 325–370 for plane Couette
flow. Our derivation has shown that Kmax = Re for plane Cou-
ette flow as indicated by Eq. (30). Using these data for Rec,
the critical value of Kmax for plane Couette flow is taken to be
Kc = 325–370, below which no turbulence occurs regardless of
the disturbance.

In Table 2, experimental data are collated for the critical con-
dition of the primary instability in the Taylor–Couette flows.
A most interesting result for small gap flow was obtained by
Hinko [18] recently. This result is useful to clarify how the
Taylor–Couette flow is related to plane Couette flow. Hinko
obtained Rec = 350 for the flow in small gap of concentric
rotating cylinders with h/R1 = 0.01. Under this critical con-
dition, the Taylor number is T = 3502 × 0.01 = 1225. This
value is quite different from the generally acceptable theoretical
value of 1708. For this experiment, Kc = 338 is obtained us-
ing Eq. (28). This value approaches the critical value for plane
Couette flow of 325–370. All the experimental data for the pri-
mary instability in Taylor–Couette flows are depicted in Fig. 12
by plotting Kc versus the relative gap width h/R1. The critical
value Kc of Kmax for plane Couette flow, plane Poiseuille flow
and pipe Poiseuille flow are also included with h/R1 = 0. For
all the wall-bounded parallel flows, Kc = 325–389, which are
calculated from the experimental data [21–23]. It is noted from
Fig. 12 that Kc decreases with increasing h/R1, which depends
on Re and h/R1 as also shown by Eq. (28). When h/R1 tends
to zero, the value of Kc tends to the value of plane Couette
flow.

It may be observed from Fig. 12 that there seems a cor-
relation/relationship for the K curve for all types of wall-
bounded flows (including Taylor–Couette flows, plane Couette
flow, plane Poiseuille flow, and pipe Poiseuille flow). However,
it should be mentioned that the critical condition from experi-
ments for Taylor–Couette flow is the primary instability for cell
pattern formation which corresponds to the infinitesimal distur-
bance (which is consistent with the prediction by linear stability
analysis [5]), while the critical conditions for wall bounded par-
allel flows were those to sustain the turbulence (spot) below
which no turbulence can be generated which corresponds to

Fig. 12. Critical value (Kc) of the energy gradient parameter Kmax versus pa-
rameter h/R1 for Taylor–Couette flows. A dashed line to connect the data is
drawn for visual convenience. The data for wall-bounded parallel flows (plane
Poiseuille flow, pipe Poiseuille flow and plane Couette flow) are also shown,
which are determined using the energy gradient theory in conjunction with the
experimental data [21–23].
Table 2
Collected data for the detailed geometrical parameters for the experiments and the critical condition determined for the case of the outer cylinder at rest (ω2 = 0)
and the inner cylinder rotating (ω1 �= 0)

Authors R1 (cm) R2 (cm) h (cm) h/R1 (ω1/ν)c (cm−2) Rec Kc

Taylor (1923) 3.80 4.035 0.235 0.06184 189.2 169 139
3.55 4.035 0.485 0.1366 70.7 120 77
3.00 4.035 1.035 0.345 30.5 95 33

Coles (1965) 10.155 11.52 1.365 0.1343 8.4 116 75
Snyder (1968) 6.023 6.281 0.258 0.0428 139.9 217 188

5.032 6.281 1.249 0.248 15 94 44
Gollub and Swinney (1975) 2.224 2.540 0.316 0.142 182. 128 80
Andereck et al. (1986) 5.25 5.946 0.696 0.1326 33. 120 78
Hinko (2003) 29.54 29.84 0.30 0.01 39.5 350 338
Prigent and Dauchot (2004) 4.909 4.995 0.0863 0.01752 758 320 301
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finite amplitude disturbance. This difference pertaining to the
initial disturbance needs to be further investigated in future.

Taylor number has been used to describe the stability of
Taylor–Couette flow as discussed in the introduction [1–5]. The
Taylor number for the case of the outer cylinder fixed (ω2 = 0)
is, T = Re2(h/R0), with Re ≡ ω1R1h

ν
. The critical value for in-

stability is Tc = 1708 from linear stability calculation [1,2].
When h/R0 tends to zero, the flow reduces to plane Cou-
ette flow. In terms of the Taylor number, when h/R0 tends to
zero (R0 tends to infinite), T = 0 and definitely T < Tc; this
means that the flow is always stable. In other words, by stating
Tc = 1708, the critical Re is infinite if h/R0 tends to zero. This
contradicts the experimental results of plane Couette flow. Ob-
viously, if the Taylor–Couette flow is related to plane Couette
flow, then the Taylor number may not be sufficient or appropri-
ate to describe the transition. It is only applicable for concentric
rotating cylinders with the magnitude of h/R0 not very large or
very small.

Taylor [5] used mathematical theory and linear stability
analysis and showed that linear stability theory agrees well with
experiments. However, the linear stability theory presupposes
an infinite small disturbance as introduced for the (rotating)
Taylor–Couette flow just as for the experiments. For the parallel
flows, the stability conditions were obtained at finite amplitude
of disturbance as for the associated experiments. A unified pic-
ture linking the stability criterion/criteria established between
the Taylor–Couette flow and parallel flows may be incongruous.
On the other hand, as shown in this paper, the present theory is
valid for all of these concerned flows. Therefore, it is postulated
that the energy gradient theory is at the very least a more feasi-
ble universal theory for flow instability and turbulent transition,
and which is valid for both pressure and shear driven flows in
both parallel flow and rotating flow configurations.

5. Conclusion

In this paper, the energy gradient theory is applied to Taylor–
Couette flow between concentric rotating cylinders. The deriva-
tion for the energy gradient function K is given for Taylor–
Couette flow, which is also related to plane Couette flow. The
limit of infinite cylinder radii of Taylor–Couette flow corre-
sponds to plane Couette flows. The theoretical results for the
critical condition found have very good concurrence with the
experiments in the literature. The conclusions drawn are:

(1) The energy gradient method as a semi-empirical theory is
valid for rotating flows. The critical value of Kmax for pri-
mary instability in Taylor–Couette flows is a constant for
a given geometry as confirmed by the experimental data.
Therefore, this may suggest that the energy gradient func-
tion K is a very reasonable parameter to describe the insta-
bility in Taylor–Couette flow.

(2) The isoline chart on the plane of ω1/ν versus ω2/ν may
provide a basic physical explanation of the regimes of flow
patterns found in the experiments of Andereck et al. [16].

(3) All wall-bounded shear flows share the same mechanism
for the instability initiation based on the relative dominance
between the gradient of total mechanical energy and the
loss of total mechanical energy in the flow. The limit of
Taylor–Couette flow at very small gap width becomes that
of plane Couette flow.

(4) The K function is useful for relating the plane Couette flow
to the Taylor–Couette flow. It has a clear physical concept
and meaning. On the other hand, Taylor number is not valid
or appropriate in the limiting case of Taylor–Couette flow
at very small gap width when the radii of cylinders tend
towards infinity.

(5) The energy gradient theory can function as a plausible uni-
versal theory for flow instability and turbulent transition
and which is valid for both pressure and shear driven flows
in both parallel flow and rotating flow configurations. It is
shown in the present study that there are some similarities
between Taylor–Couette flow and planar Couette flow.
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